
A Robotic Ball Balancing Beam

Jeff Lieberman

February 10, 2004

Abstract

I designed a beam to balance and move a chrome steel 1.25” di-
ameter ball, to a desired position/waveform through time, stably and
with high performance behavior. I tested the ball to make sure it could
retain its central position, as well as following different frequency sine
and square waves of desired position, with or without human distur-
bances, and it succeeds in these tasks, up to a sine wave frequency
of roughly 0.5 Hertz [at an amplitude of roughly 80% of the overall
system travel], at which point the linearization of the system model
breaks down and the mechanical system becomes unstable.

1 Introduction

The Ball Balancing Beam is a common feedback control system project,
due mostly to its ease in construction, interesting asthetics, and its use
in learning about applying control to stabilize an otherwise unstable
system. The setup is reasonably simple - some sort of beam is mounted

1

on a motor shaft [or commonly through some transmission]. The beam
is set to stably hold a ball in one dimension, [usually by being com-
posed of two parallel beams], so that it can only roll back and forth in
the one unconstrained dimension. This system is extremely unstable
[as will be explained in more detail below], and needs compensation
to stablize. Once stabilized, the system is usually commanded to a
zero [or centralized] position, and outside disturbances such as people
pushing the ball are rejected by the system. After that was accom-
plished, I decided to test alternate control signals to explore dynamic
behavior.

2 Dynamic Model

The ball balancing beam setup is shown in Figure [1] with relevant
labels.

Figure 1: Dynamics of the ball balancing beam system.

As can be seen, the beam angle controls acceleration, not position.

2

Specifically, from gravity we have

Fgravity = mballg sin(θ),

and since we assume the ball is rolling without slipping, we also have
rω = ẋ. The moment of inertia of the solid ball is J = 2mr2/5. Given
centripetal acceleration with rotation of the rod as acentripetal = xθ̇2,
altogether we have

ẍ− xθ̇2 = −g sin θ − 2
5
ẍ,

which, when we approximate θ small, gives us a transfer function of

G(s) ≡ x

θ
=

5g

7s2
=

c

s2
,

for c = 5g/7. The important thing here is that this transfer function
introduces two poles at the origin.

The dc motor inertia follows the typical behavior, introducing yet
another pole at the origin from the standard steady state ω ∝ V
relation.

3 Sensing Technologies

Two sensors are required for the stability of this system. First, since
the angle of the beam is needed to determine the ball’s acceleration, I
attached a potentiometer along the front of the beam [at the rotational
axis]. After calibration in dSpace [described below] this measured the
angle of the beam.

The more difficult of the two sensors was by far the linear sensor,
which in the end proved the most difficult part of this project. I
attempted two different techniques in solving this problem, with usable
results in the end, but still with great room for improvement.

The first technique I attempted was a magnetic induction sen-
sor [the full model is shown in figure [2] and a closeup of the sensor
loop wiring is in figure [3]]. The two pipes that made the beam were
both made of aluminum, and were kept insulated from each other. A
long insulated wire was wrapped in a loop inside these wires roughly
twenty times, and a large AC signal was run through it. Two wire
probes were attached to the two pipes. When the ball was laid on the
beam, it formed a flux area concentric to the AC signal, which was

3

Figure 2: The final first revision induction sensor model.

Figure 3: Closeup of the induction sensor for the old model.

4

[conveniently] proportional to the position that the ball lay along the
beam. This signal could be measured to give a measure of position.
Running the AC control signal at resonance frequency with the coil
[with an added capacitor] greatly magnified the picked-up signal.

Although that sensing technology held promise, it proved extremely
noisy as well as untrustworthy, as the signal often disappeared. One
cause of this was the rolling of the ball - the roughness of the surfaces
and the ball [microscopic but non-negligable] caused many breaks in
conductivity of the signal current path. Even after the application
of conductive grease and some filtering attempts, the signal was ex-
tremely shaky. It would be an interesting sensing type to try in the
future.

The next idea for the linear sensor was to use a resistive wire,
running along the top of one half of the beam, and a copper wire on the
other half, as a linear potentiometer. One end of the resistive wire was
held at 5V, the other at ground. Thus, when the ball moved linearly
across the resistive wire, it would be held at a voltage proportional to
its distance from ground to the 5V rail. The copper wire, also making
contact with the ball, would carry that voltage off the ball/beam,
where it could be sampled.

For the wire, I used Nickel Chromium, available in a variety of sizes,
with the resistance of course scaling down with larger diameter wire.
However, to get a reasonable signal at reasonable voltage/current,
I used size 28 wire, which has a resistance of roughly 5Ω/ft. This
provided adequate signal. The wires were laid on top of two plates of
1/8” acrylic (one plate with the wire being mounted is shown in Figure
[3], and a setup of an original test is shown in Figure [4]), the edges of
which were beveled to the proper angle so as to be perpendicular to
the ball. They were then adhered with super glue, and then sanded
down to resurface the conductive wiring [as they needed to be slightly
covered with glue to get enough of a hold on the acrylic].

This sensing approach worked, and was the final choice in the
design. However, the rolling of the ball [which causes breaks in con-
ductivity] causes extreme noise in the signal. Also, imperfections of
alignment reduce signal quality. The signal was usable, however, since
derivatives of this signal were needed for compensation, the signal
needed to be filtered so as to not cause infinite spikes. This reduced
the ability to design a better compensation technique, and the intro-
duction of low pass filters added yet another pole near the origin to
deal with in compensation design.

5

Table 1: Nichrome wire being mounted on one of the acrylic beam panels,
and a look at the final sensor setup on the beam.

6

Figure 4: A view of an early test of the nichrome wire as linear sensor.

7

4 dSpace/Simulink

For feedback design I used Matlab and the Simulink toolbox. The
Simulink toolbox allows quick and easy setting up of feedback con-
trol systems and testing of their response to different types of input
functions, such as a step response.

dSpace is a hardware platform that interfaces with Simulink, to
allow real sensory input, and real motor signal outputs. In this way,
a theoretically tested feedback controller can be wired up to a real
mechanical construction, and then run with real feedback on the real
system [in contrast to being built in an analog system with op amps,
etc]. This is extremely useful for testing a variety of feedback con-
trollers in a short amount of time, which was done in this case.

Using dSpace and Simulink did cause several problems, however.
First, with already noisy data, taking derivatives of the linear sensor
measurements caues impulses in the data stream. The initial design
to include two derivatives of the input data [explained below] was
impossible with this data as the derivatives in this case blew up quickly
out of the range of Simulink’s variables. Thus, a one-derivative model
controller needed to be designed. Possibly with a different averaging
method of computing derivatives, better responses could be created.

Also, placing poles in certain locations seemed to present digital
problems that it shouldn’t have - when attempting to place poles ex-
tremely close to the origin, for some reason Simulink would make the
signal completely unstable, even though as the pole reached its de-
sired location, there seemed no indication that the designed controller
should be approaching any instability. This seemed to be some sort
of bug in Simulink, as far as I could find.

5 Compensator Design

The first part of the controller that was designed was an minor loop
compenator for the motor to achieve any desired angle. First I found
the important motor parameters, namely Ra = 4.1Ω, kt = 35.1e − 1
Nm/A, and kw = 24/600, and including the gear ratio of the motor,
roughly 100, the total motor and beam inertia, J = 5.4e− 6kgm2, as
well as kp = 0.1

π/4 . The overall transfer function for the minor loop is

θ

V
=

1/kw
JRas
ktkω

+ 1
1
s
.

8

Instantiating a proportional feedback controller with a gain of 25
caued a nearly first order response with a closed-loop bandwidth of
roughly 100 Hz. This bandwidth is far higher than needed in this ball
balancing application, which runs at closer to 1Hz given the inertia of
the ball.

−80 −60 −40 −20 0 20 40
−50

−40

−30

−20

−10

0

10

20

30

40

50

Motor loop
Full plant loop

Addition of Plant to motor loop Root Locus

Real Axis

Im
ag

in
ar

y
A

xi
s

Figure 5: A comparison of the motor closed loop root locus to that of the
full plant. Note that there becomes a triple pole at the origin.

Next was the design of the outer loop, in order to control position
of the ball by control of the beam angle. Given the limitations found in
using dSpace/Simulink to design a controller, finding a stable solution
proved difficult. The plant introduces two new poles at the origin,
which need to be dealt with to stabilize the system. Figure [5] shows
the comparison of root locus methods on the motor closed loop to the
full system plant loop. In order to get any reasonable sort of data
out of the linear potentiometer [which involved a derivative] the data

9

needed to be filtered. The 1
0.1s+1 filter achieves this without too much

degredation in the bandwidth, but of course adds yet another pole to
the system.

By adding a lead compensator of the form

0.1s + 0.01
0.01s + 1

,

the phase margin at crossover becomes stable. Although I attempted
to improve response with a higher order controller, this would have
required another derivative in the position sensor feedback. This was
impossible given dSpace and the quality of the linear sensor. Also,
trying to place some of the feedback poles toward negative infinity
resulted in some unexpected and buggy behavior from Simulink. This
would’ve resulted in less overshoot and lighter ringing response.

6 Results

Figure [6] shows the comparison of root locus plots before and after
compensation. Notably, the poles from the origin move to the left half
plane briefly before crossing back over to instability.

Figure [7] shows the theoretical system response of the beam sys-
tem, before compensation [giving us roughly 0◦ phase margin], and
after compensation [where it becomes about 60◦].

Figure [8] shows the theoretical response to a unit step applied to
the beam system, once again before and after compensation. Clearly,
before compensation the system is unstable, and after compensation,
not only is it stable, but it is reasonably fast, and appears almost
critically damped. In reality, differences in motor parameters, non-
linearities in the plan, and sensor variations/offsets change pole/zero
locations as well as loop gains. This causes slightly more second-order
effects than expected otherwise, which could be fixed by finer tuning of
the compensator. However, without fine tuning, the system performs
satisfactorily.

The entire feedback system design in dSpace/Simulink is shown in
Table [6].

In reality, the system performed quite well. Table [6] shows a cou-
ple views of the final system in action. There was modest overshoot,
for reasons previously explained. But it’s ability for disturbance re-
jection and for path tracking [sawtooth, sine, and square waves were

10

−80 −60 −40 −20 0 20 40
−50

−40

−30

−20

−10

0

10

20

30

40

50
Root Locus of the Full Closed Loop without Compensation

Real Axis

Im
ag

in
ar

y
A

xi
s

−140 −120 −100 −80 −60 −40 −20 0 20 40

−80

−60

−40

−20

0

20

40

60

80

Root Locus of the Full Closed Loop with Compensation

Real Axis

Im
ag

in
ar

y
A

xi
s

Figure 6: A comparison of root locus plots before and after applied compen-
sation.

11

−300

−200

−100

0

100

200

300

M
ag

ni
tu

de
 (

dB
)

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

−450

−360

−270

−180

−90

P
ha

se
 (

de
g)

Uncompensated System
With compensation

Bode Plot Comparison of Compensated and Uncompensated Closed Loops

Frequency (rad/sec)

Figure 7: A comparison of system response before and after applied compen-
sation.

12

0 0.5 1 1.5 2 2.5 3
−10

−5

0

5

10

15

20

25

Uncompensated
Lead Compensated

Comparison of Step Response with Compensated and Uncompensated Systems

Time (sec)

A
m

pl
itu

de

Figure 8: A comparison of system response to a step function before and
after applied compensation.

13

Sensor Feedback Section

fltered liner

MUX ADC

position Input

1

0.1s+1

filter

.1s+0.01

0.01s+1

Transfer Fcn2

Test Signal

RTI Data

Pot value

Desired Position

Motor Subsystem

0.285

Linear Sensor Offset1

.335

Linear Sensor Offset

0.3

Gain1

3

Gain
emu

inputs
pot raw

lineOut1

lineOut2

controlSignal

raw

Motor Magnitude

Motor Direction

Motor Output Section

0.306

Zero Angle <=

Relational

Operator

25

Gain

1

1

Error Filter

Duty cycle 1

Duty cycle 2

Duty cycle 3

Duty cycle 4

DS1104SL_DSP_PWM

MASTER BIT OUT

DS1104BIT_OUT_C0

0

Constant

|u|

Abs

2

Desired Position

1

Pot value

mag

sign

error

pregain

Table 2: The full simulink beam controller model.

14

tried] was high. For videos of actual system response over time, please
view the movie at http://bea.st/sight/rbbb/rbbb.mov .

7 Acknowledgements

Many thanks to Jack Holloway, for compensation advice, especially
when dSpace/Simulink started freaking out and ideal feedback con-
trollers wouldn’t respond.

15

Table 3: Some views of the final model, static and in motion.

16

